Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cold-formed steel assemblies are commonly used for partition walls in buildings, playing a critical role for fire compartmentation, and are also increasingly used as load-bearing structural systems due to their high strength-to-weight ratio and suitability for off-site prefabrication. This evolution leads to a need to characterize the behavior of these systems under the combined action of loading and fire. The objective of this paper is to provide a review of experimental studies on cold-formed steel members and assemblies at elevated temperatures. A comparative overview of testing methods is presented with a focus on the heating and loading procedures, temperature distributions, and end boundary conditions. The review covers experimental tests on lipped channels and built-up sections in compression and flexure, and wall and floor assemblies. The impact of elevated temperature on material properties and member strength is explored. Drawing on data from 30 experimental studies, the review examines the effects of end boundary conditions, section shape, temperature distribution, gypsum sheathing, and internal insulation on the stability and strength of the thin-walled members. Recommendations for future research include member experiments with non-uniform section temperatures and under localized fires, comparisons of steady-state and transient tests, and studies on lipped channel joists. By synthesizing key findings and identifying research gaps, this review aims to guide future experimental studies and support the advancement of building codes and performance-based fire design methods for cold-formed steel structures.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
An official website of the United States government
